Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Bone Miner Res ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722812

ABSTRACT

Skeletal growth, modeling and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In the present study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1. To assess the in vivo relevance of this regulation, we crossed Omd-deficient mice with a mouse line harboring an inducible, osteoblast-specific Wnt1 transgene. After induction of Wnt1 expression for 1 or 3 weeks, the osteoanabolic potency of WNT1 was not impaired despite the Omd deficiency. Since current knowledge regarding the in vivo physiological function of OMD is limited, we next focused on skeletal phenotyping of wild-type and Omd-deficient littermates, in the absence of a Wnt1 transgene. Here we did not observe an impact of Omd deficiency on trabecular bone parameters by histomorphometry and µCT either. Importantly, however, male and female Omd-deficient mice at the ages of 12 and 24 weeks displayed a slender bone phenotype with significantly smaller long bones in the transversal dimension, while the longitudinal bone growth remained unaffected. Although mechanical testing revealed no significant changes explained by impaired bone material properties, atomic force microscopy of the femoral bone surface of Omd-deficient mice revealed moderate changes at the nanostructural level, indicating altered regulation of collagen fibril formation and aggregation. Taken together, our data demonstrate that, although OMD is dispensable for the osteoanabolic effect of WNT1, its deficiency in mice specifically modulates transversal cortical bone morphology.


We explored the physiological relevance of the protein Osteomodulin (OMD) that we previously found to be induced by the osteoanabolic molecule WNT1. While other studies have shown that OMD is involved in the regulation of collagen fibril formation in vitro, its function in vivo has not been investigated. We confirmed that OMD is directly regulated by WNT1 but surprisingly, when we bred mice lacking OMD with mice engineered to highly express WNT1, we found that the osteoanabolic effect of WNT1 was unaffected by the absence of OMD. Interestingly, mice lacking OMD did show differences in the shape of their bones, particularly in their width, despite no significant changes in bone density or length. Investigation of the bone matrix of mice lacking OMD at the nanostructural level indicated moderate differences in the organization of collagen fibrils. This study provided further insights into the effect of WNT1 on bone metabolism and highlighted a specific function of OMD in skeletal morphology.

2.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605423

ABSTRACT

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Zebrafish , Down-Regulation , Mice, Nude , Proteomics , Energy Metabolism , Cell Proliferation , Cell Line, Tumor , Cell Movement , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
3.
Bone Res ; 12(1): 12, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38395992

ABSTRACT

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Osteophyte , Animals , Humans , Mice , Cartilage, Articular/pathology , Chondrocytes , Ion Channels/genetics , Osteoarthritis/genetics , Osteogenesis/genetics , Osteophyte/metabolism
4.
J Bone Miner Res ; 38(9): 1334-1349, 2023 09.
Article in English | MEDLINE | ID: mdl-37554015

ABSTRACT

Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Dwarfism , Protons , Child , Humans , Animals , Mice , Swine , Antiporters , HeLa Cells , Swine, Miniature , Dwarfism/genetics , Golgi Apparatus
5.
Lab Anim Res ; 39(1): 9, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37189184

ABSTRACT

BACKGROUND: Enrichment of home cages in laboratory experiments offers clear advantages, but has been criticized in some respects. First, there is a lack of definition, which makes methodological uniformity difficult. Second, there is concern that the enrichment of home cages may increase the variance of results in experiments. Here, the influence of more natural housing conditions on physiological parameters of female C57BL/6J mice was investigated from an animal welfare point of view. For this purpose, the animals were kept in three different housing conditions: conventional cage housing, enriched housing and the semi naturalistic environment. The focus was on musculoskeletal changes after long-term environmental enrichment. RESULTS: The housing conditions had a long-term effect on the body weight of the test animals. The more complex and natural the home cage, the heavier the animals. This was associated with increased adipose deposits in the animals. There were no significant changes in muscle and bone characteristics except for single clues (femur diameter, bone resorption marker CTX-1). Additionally, the animals in the semi naturalistic environment (SNE) were found to have the fewest bone anomalies. Housing in the SNE appears to have the least effect on stress hormone concentrations. The lowest oxygen uptake was observed in enriched cage housing. CONCLUSIONS: Despite increasing values, observed body weights were in the normal and strain-typical range. Overall, musculoskeletal parameters were slightly improved and age-related effects appear to have been attenuated. The variances in the results were not increased by more natural housing. This confirms the suitability of the applied housing conditions to ensure and increase animal welfare in laboratory experiments.

6.
Nat Commun ; 13(1): 3059, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650194

ABSTRACT

Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.


Subject(s)
Calcification, Physiologic , Neovascularization, Physiologic , Stress, Mechanical , Adolescent , Bone Development , Bone Matrix , Extracellular Matrix Proteins , Humans , Ion Channels , Morphogenesis , Phosphoproteins , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2
7.
Cancers (Basel) ; 14(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35158823

ABSTRACT

Breast cancer cells frequently metastasize to bone, where their interaction with bone remodeling cell types enhances osteolytic bone destruction. Importantly, however, whereas skeletal analyses of xenograft models are usually restricted to hindlimb bones, human skeletal metastases are far more frequent in the spine, where trabecular bone mass is higher compared to femur or tibia. Here, we addressed whether breast cancer cells injected into immunocompromised mice metastasize to the spine and if this process is influenced by the amount of trabecular bone. We also took advantage of mice carrying the Col1a1-Krm2 transgene, which display severe osteoporosis. After crossing this transgene into the immunocompromised NSG background we injected MDA-MB-231-SCP2 breast cancer cells and analyzed their distribution three weeks thereafter. We identified more tumor cells and clusters of different size in spine sections than in femora, which allowed influences on bone remodeling cell types to be analyzed by comparing tumor-free to tumor-burdened areas. Unexpectedly, the Col1a1-Krm2 transgene did not affect spreading and metastatic outgrowth of MDA-MB-231-SCP2 cells, suggesting that bone tumor interactions are more relevant at later stages of metastatic progression.

8.
J Bone Miner Res ; 36(2): 369-384, 2021 02.
Article in English | MEDLINE | ID: mdl-33180356

ABSTRACT

The skeleton is a dynamic tissue continuously adapting to mechanical stimuli. Although matrix-embedded osteocytes are considered as the key mechanoresponsive bone cells, all other skeletal cell types are principally exposed to macroenvironmental and microenvironmental mechanical influences that could potentially affect their activities. It was recently reported that Piezo1, one of the two mechanically activated ion channels of the Piezo family, functions as a mechanosensor in osteoblasts and osteocytes. Here we show that Piezo1 additionally plays a critical role in the process of endochondral bone formation. More specifically, by targeted deletion of Piezo1 or Piezo2 in either osteoblast (Runx2Cre) or osteoclast lineage cells (Lyz2Cre), we observed severe osteoporosis with numerous spontaneous fractures specifically in Piezo1Runx2Cre mice. This phenotype developed at an early postnatal stage and primarily affected the formation of the secondary spongiosa. The presumptive Piezo1Runx2Cre osteoblasts in this region displayed an unusual flattened appearance and were positive for type X collagen. Moreover, transcriptome analyses of primary osteoblasts identified an unexpected induction of chondrocyte-related genes in Piezo1Runx2Cre cultures. Because Runx2 is not only expressed in osteoblast progenitor cells, but also in prehypertrophic chondrocytes, these data suggested that Piezo1 functions in growth plate chondrocytes to ensure trabecular bone formation in the process of endochondral ossification. To confirm this hypothesis, we generated mice with Piezo1 deletion in chondrocytes (Col2a1Cre). These mice essentially recapitulated the phenotype of Piezo1Runx2Cre animals, because they displayed early-onset osteoporosis with multiple fractures, as well as impaired formation of the secondary spongiosa with abnormal osteoblast morphology. Our data identify a previously unrecognized key function of Piezo1 in endochondral ossification, which, together with its role in bone remodeling, suggests that Piezo1 represents an attractive target for the treatment of skeletal disorders. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cancellous Bone , Chondrocytes , Animals , Cancellous Bone/diagnostic imaging , Cell Differentiation , Growth Plate , Ion Channels/genetics , Mice , Osteoblasts , Osteogenesis/genetics
9.
Neuro Oncol ; 22(7): 955-966, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32064501

ABSTRACT

BACKGROUND: Brain metastasis (BM) in non-small-cell lung cancer (NSCLC) has a very poor prognosis. Recent studies have demonstrated the importance of cell adhesion molecules in tumor metastasis. The aim of our study was to investigate the role of activated leukocyte cell adhesion molecule (ALCAM) in BM formation in NSCLC. METHODS: Immunohistochemical analysis was performed on 143 NSCLC primary tumors and BM. A correlation between clinicopathological parameters and survival was developed. Biological properties of ALCAM were assessed in vitro by gene ablation using CRISPR/Cas9 technology in the NCI-H460 NSCLC cell line and in vivo by intracranial and intracardial cell injection of NCI-H460 cells in NMRI-Foxn1nu/nu mice. RESULTS: ALCAM expression was significantly upregulated in NSCLC brain metastasis (P = 0.023) with a de novo expression of ALCAM in 31.2% of BM. Moderate/strong ALCAM expression in both primary NSCLC and brain metastasis was associated with shortened survival. Functional analysis of an ALCAM knock-out (KO) cell line showed a significantly decreased cell adhesion capacity to human brain endothelial cells by 38% (P = 0.045). In vivo studies showed significantly lower tumor cell dissemination in mice injected with ALCAM-KO cells in both mouse models, and both the number and size of BM were significantly diminished in ALCAM depleted tumors. CONCLUSIONS: Our findings suggest that elevated levels of ALCAM expression promote BM formation in NSCLC through increased tumor cell dissemination and interaction with the brain endothelial cells. Therefore, ALCAM could be targeted to reduce the occurrence of BM. KEY POINTS: 1. ALCAM expression associates with poor prognosis and brain metastasis in NSCLC.2. ALCAM mediates interaction of NSCLC tumor cells with brain vascular endothelium.3. ALCAM might represent a novel preventive target to reduce the occurrence of BM in NSCLC.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Activated-Leukocyte Cell Adhesion Molecule , Animals , Brain Neoplasms/secondary , Endothelial Cells , Endothelium, Vascular , Female , Humans , Male , Mice
10.
Front Immunol ; 10: 2182, 2019.
Article in English | MEDLINE | ID: mdl-31572390

ABSTRACT

The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.


Subject(s)
Bone Resorption , Chemokines/immunology , Osteoblasts , Osteoclasts , Osteogenesis/immunology , Signal Transduction/immunology , Animals , Bone Resorption/immunology , Bone Resorption/pathology , Humans , Mice , Osteoblasts/immunology , Osteoblasts/pathology , Osteoclasts/immunology , Osteoclasts/pathology
11.
PLoS One ; 14(7): e0219734, 2019.
Article in English | MEDLINE | ID: mdl-31314788

ABSTRACT

Albeit osteoporosis is one of the most prevalent disorders in the aged population, treatment options stimulating the activity of bone-forming osteoblasts are still limited. We and others have previously identified sphingosine-1-phosphate (S1P) as a bone remodeling coupling factor, which is released by bone-resorbing osteoclasts to stimulate bone formation. Moreover, S1pr3, encoding one of the five known S1P receptors (S1P3), was found differentially expressed in osteoblasts, and S1P3 deficiency corrected the moderate high bone mass phenotype of a mouse model (deficient for the calcitonin receptor) with increased S1P release from osteoclasts. In the present study we addressed the question, if S1P3 deficiency would also influence the skeletal phenotype of mice lacking S1P-lyase (encoded by Sgpl1), which display markedly increased S1P levels due to insufficient degradation. Consistent with previous reports, the majority of Sgpl1-deficient mice died before or shortly after weaning, and this lethality was not influenced by additional S1P3 deficiency. At 3 weeks of age, Sgpl1-deficient mice displayed increased trabecular bone mass, which was associated with enhanced osteoclastogenesis and bone resorption, but also with increased bone formation. Most importantly however, none of the skeletal parameters assessed by µCT, histomorphometry and serum analyses were significantly influenced by additional S1P3 deficiency. Taken together, our findings fully support the concept that S1P is a potent osteoanabolic molecule, although S1P3 is not the sole receptor mediating this influence. Since S1P receptors are considered excellent drug targets, it is now required to screen for the impact of other family members on bone formation.


Subject(s)
Aldehyde-Lyases/genetics , Bone and Bones/enzymology , Sphingosine-1-Phosphate Receptors/genetics , Alleles , Animals , Bone Remodeling , Bone and Bones/diagnostic imaging , Female , Male , Mice , Mice, Transgenic , Osteoblasts/enzymology , Osteoclasts/enzymology , Phenotype , X-Ray Microtomography
12.
PLoS One ; 12(10): e0187030, 2017.
Article in English | MEDLINE | ID: mdl-29088242

ABSTRACT

Fetuin-A / α2-Heremans-Schmid-glycoprotein (gene name Ahsg) is a systemic inhibitor of ectopic calcification. Due to its high affinity for calcium phosphate, fetuin-A is highly abundant in mineralized bone matrix. Foreshortened femora in fetuin-A-deficient Ahsg-/- mice indicated a role for fetuin-A in bone formation. We studied early postnatal bone development in fetuin-A-deficient mice and discovered that femora from Ahsg-/- mice exhibited severely displaced distal epiphyses and deformed growth plates, similar to the human disease slipped capital femoral epiphysis (SCFE). The growth plate slippage occurred in 70% of Ahsg-/- mice of both sexes around three weeks postnatal. At this time point, mice weaned and rapidly gained weight and mobility. Epiphysis slippage never occurred in wildtype and heterozygous Ahsg+/- mice. Homozygous fetuin-A-deficient Ahsg-/- mice and, to a lesser degree, heterozygous Ahsg+/- mice showed lesions separating the proliferative zone from the hypertrophic zone of the growth plate. The hypertrophic growth plate cartilage in long bones from Ahsg-/- mice was significantly elongated and V-shaped until three weeks of age and thus prior to the slippage. Genome-wide transcriptome analysis of laser-dissected distal femoral growth plates from 13-day-old Ahsg-/- mice revealed a JAK-STAT-mediated inflammatory response including a 550-fold induction of the chemokine Cxcl9. At this stage, vascularization of the elongated growth plates was impaired, which was visualized by immunofluorescence staining. Thus, fetuin-A-deficient mice may serve as a rodent model of growth plate pathologies including SCFE and inflammatory cartilage degradation.


Subject(s)
Bone Diseases, Developmental/genetics , Epiphyses, Slipped/genetics , Femur/abnormalities , Hindlimb/abnormalities , alpha-2-HS-Glycoprotein/genetics , Animals , Female , Fluorescent Antibody Technique , Gene Expression Profiling/methods , Growth Plate/abnormalities , Male , Mice, Inbred C57BL , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction , Weaning , alpha-2-HS-Glycoprotein/deficiency
14.
Nat Commun ; 4: 1507, 2013.
Article in English | MEDLINE | ID: mdl-23422675

ABSTRACT

Despite its importance in many industrial, geological and biological processes, the mechanism of crystallization from supersaturated solutions remains a matter of debate. Recent discoveries show that in many solution systems nanometre-sized structural units are already present before nucleation. Still little is known about the structure and role of these so-called pre-nucleation clusters. Here we present a combination of in situ investigations, which show that for the crystallization of calcium phosphate these nanometre-sized units are in fact calcium triphosphate complexes. Under conditions in which apatite forms from an amorphous calcium phosphate precursor, these complexes aggregate and take up an extra calcium ion to form amorphous calcium phosphate, which is a fractal of Ca(2)(HPO(4))(3)(2-) clusters. The calcium triphosphate complex also forms the basis of the crystal structure of octacalcium phosphate and apatite. Finally, we demonstrate how the existence of these complexes lowers the energy barrier to nucleation and unites classical and non-classical nucleation theories.


Subject(s)
Biomimetic Materials/chemistry , Calcium Phosphates/chemistry , Models, Chemical , Animals , Calcium/analysis , Cattle , Collagen/chemistry , Cryoelectron Microscopy , Durapatite/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Microscopy, Atomic Force , Models, Molecular , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Static Electricity , Synchrotrons , Thermodynamics , X-Ray Diffraction
15.
Calcif Tissue Int ; 93(4): 355-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23277412

ABSTRACT

Mineralization in higher vertebrates is restricted to bones and teeth. Pathological calcification is mostly known in vasculature but can basically affect all soft tissues. Simply put, tissue mineralization occurs through the interplay of three key determinants: extracellular matrix suitable for mineralization, extracellular levels of inorganic phosphate and calcium, and the levels of mineralization inhibitors that may be expressed systemically or locally. In this article we describe the role of a prototypic systemic inhibitor protein of mineralization, the hepatic plasma protein α2-Heremans-Schmid glycoprotein/fetuin-A. Fetuin-A mediates the formation of stable colloidal mineral-protein complexes called calciprotein particles (CPPs). Thus, fetuin-A is important in the stabilization and clearance of amorphous mineral precursor phases. Efficient clearance of CPPs and, thus, of excess mineral from circulation prevents local buildup of mineral and calcification of soft tissue. Besides calcium phosphate binding, fetuin-A also acts as a carrier for lipids, which may influence calcification, inflammation, and apoptosis. Fetuin-A-deficient (Ahsg(-/-)) mice show impaired growth of their long bones and premature growth plate closure. We posit that the absence of fetuin-A in the growth plate causes simultaneous lack of calcification inhibition and excess lipid hormone signaling, leading to premature growth plate mineralization and shortened long bones. This suggests that fetuin-A regulates endochondral ossification through mineralization inhibition and lipid (hormone) binding.


Subject(s)
Bone and Bones/physiology , Calcification, Physiologic , Calcinosis/metabolism , alpha-2-HS-Glycoprotein/metabolism , Animals , Apoptosis , Blood Proteins/metabolism , Bone Development , Bone and Bones/metabolism , Calcium Phosphates/metabolism , Chondrocytes/cytology , Disease Models, Animal , Extracellular Matrix/metabolism , Humans , Lipids/chemistry , Mice , Mice, Transgenic , Osteoblasts/cytology , Protein Binding
16.
Nat Mater ; 9(12): 1004-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20972429

ABSTRACT

Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.


Subject(s)
Apatites/metabolism , Collagen Type I/metabolism , Durapatite/antagonists & inhibitors , Animals , Bone and Bones/metabolism , Calcium Phosphates/metabolism , Collagen Type I/chemistry , Cryoelectron Microscopy , Cryopreservation , Electron Microscope Tomography , Extracellular Matrix/metabolism , Horses , Light , Models, Molecular , Nanoparticles/chemistry , Osteogenesis , Peptides/metabolism , Scattering, Radiation , Spectrometry, X-Ray Emission , Staining and Labeling/methods , Surface Properties , Tendons/chemistry
17.
Chem Commun (Camb) ; 46(10): 1703-5, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20177622

ABSTRACT

Chitosan (CS) can mediate the formation of spherical, tabulate, and unique starfruit-like silica in the presence of phosphate ions (Pi). CryoTEM and cryoET were used to examine the CS aggregates in the hydrated state. 3D starfruit-like CS/Pi aggregates were reconstructed, which unambiguously confirmed the templating effect of CS/Pi in biomimetic silicification.


Subject(s)
Biomimetics/methods , Chitosan/chemistry , Electron Microscope Tomography , Silicon Dioxide/chemistry , Carbohydrate Conformation , Models, Molecular , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...